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The model for a shear zone proposed in Talbot (1999),
which appeals to the behavior of a uniform power-law, or
pseudoplastic, fluid, may provide adequate fits to the
kinematics or strain distribution in natural or
experimentally-produced shear zones. However, it is invalid
as apossibledescription of shear zone behavior, since a
fundamental principle of mechanics is violated. Briefly,
since the model shear zone is constructed by combining
two halves of a pressure-gradient driven flow in a straight-
sided channel, the linear pressure gradients in each half of
the constructed zone will have opposite signs. This implies
that, except for a single point along the zone, the normal
stress across its central plane will be discontinuous. This
violates Newton’s Third Law of Motion, often stated as:
“action equals reaction.” Although the model has other
features that do not jibe with mechanical intuition, it suffices
to establish asingle violation of mechanical principles to
discount it as a valid model for the phenomenon of interest.

It will be sufficient to consider only the simplest case, that
for the Newtonian viscous fluid. According to the conditions
stipulated by the author, a shear zone of width 2 h in a
uniform Newtonian viscous fluid may be described by the
velocity field (Fig. 1)

u� C u� � y2 2 2hy
� �

0 # y # h �1a�

u� C 1� � y2 1 2hy
� �

2 h # y # 0 �1b�
where the constants are

C u� � � 2V=�2h2� �2a�

C 1� � � V=�2h2� �2b�
The relative tangential motion between the two bounding

blocks isV, in a right-lateral sense. The velocity component
u, is in the tangential,x-direction, and the componentv,
which vanishes, is in the normal,y-direction. This velocity

field, as the author states, yields displacement and strain
distributions that look like those in a shear zone and might
quantitatively approximate those observed in some natural
shear zones.

We may then ask what the distribution of stress in the
zone is. Since it is stipulated that the zone is in a uniform
viscous fluid, the velocity field must correspond to a unique1

stress distribution derivable through the kinematic,
constitutive, and stress equilibrium equations. For an
incompressible, isotropic viscous fluid in plane flow in the
x,y-plane

sxxsyy � 4h2u=2x

sxy � h 2v=2x 1 2u=2y
ÿ � �3a�

and further,

szz� 1
2 �sxx 1 syy�

sxz� syz� 0
�3b�

whereh is the viscosity. From the first relations in (3a) and
(3b),

sxx � syy � szz� 2p �4�
wherep is the pressure. From the second relation in (3a) and
the expressions for the velocity, (1) and (2),

sxy � h2u=2y

and

sxy � 2hC u� � y 2 h
ÿ �

0 # y # h

sxy � 2hC 1� � y 1 h
ÿ �

2 h # y # 0:
�5�

The shear stress must be continuous at the boundary
between the two halves of the model,y� 0, requiring

2C u� � � C 1� � �6�
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1 The stress distribution is only determined to within an arbitary uniform
pressure.



From (2), this is the case, and the condition is satisfied.
Now, complete the derivation of the pressure,p. From

Eq. (4), and the equilibrium equation

2sxx=2x 1 2sxy=2y� 0:

or

2p=2x� 2sxy=2y �7�
Then, from the two equations in (5), and from (2)

2p=2x
ÿ � u� �� 2hC u� � � 2hV=h2 0 # y # h

2p=2x
ÿ � 1� �� 2hC 1� � � hV=h2 2 h # y # 0:

�8�

The pressure gradients in the upper and lower half of the
“shear zone”, for this case, are equal in magnitude, but
opposite in sign. Then, integrating (8), and from (4), we
have, in particular,

s u� �
yy � 2p u� � � 2p u� �

0 1 hV=h2
� �

x

s 1� �
yy � 2p 1� � � 2p 1� �

0 2 hV=h2
� �

x:
�9�

But a necessary condition at the boundary surface

between the two halves of the putative shear zone,y� 0, is

s u� �
yy x; 0� � � s 1� �

yy x; 0� � �10a�
or

2p u� �
0 1 hV=h2

� �
x� 2p 1� �

0 2 hV=h2
� �

x: �10b�

This condition may only be satisfied at a single point, by
fixing one of the constants of integration. (The other
constant of integration remains arbitrary.) Hence, the
required condition (10a) cannot be satisfied on the interface
for any V± 0. Thus, on this ground, the model is invalid,
and any conclusions drawn from it are unfounded.

Since the channel flow in the case of an arbitrary pseudo-
plastic fluid with stress exponentn is also driven by a linear
pressure gradient, the same violation will arise in the
general case.

Talbot’s (1999) model, like others in structural geology,
is constructed chiefly on the basis of kinematic reasoning.
What has been left out of its derivation is a check of all
conditions that must be satisfied, notably those in the stress.
In this case, the velocity distribution in a channel flow is
adapted, by a cutting and splicing operation, to provide a
shear zone look-alike. Since we already know what a shear
zone looks like, and may have some notion of its evolution,
the appeal of the model is in providing a potential
mechanical basisfor understanding its behavior. It is this
possibility that the above argument negates: there is no
possibility of producing the desired flow by the considered
loading.
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Fig. 1. Shear zone model, with velocity profile drawn for the case of a
Newtonian viscous fluid, identifying symbols used here.


